Existence, Uniqueness, and Parametrization of Lagrangian Invariant Subspaces
نویسندگان
چکیده
The existence, uniqueness, and parametrization of Lagrangian invariant subspaces for Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parametrization are given. Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic Riccati equations follow as simple corollaries.
منابع مشابه
Numerische Simulation Auf Massiv Parallelen Rechnern Preprint-reihe Des Chemnitzer Sfb 393 Lagrangian Invariant Subspaces of Hamiltonian Matrices
The existence and uniqueness of Lagrangian invariant subspaces of Hamiltonian matrices is studied. Necessary and suucient conditions are given in terms of the Jor-dan structure and certain sign characteristics that give uniqueness of these subspaces even in the presence of purely imaginary eigenvalues. These results are applied to obtain in special cases existence and uniqueness results for Her...
متن کاملAsymmetric Algebraic Riccati Equation: A homeomorphic parametrization of the set of solutions
In this paper, asymmetric Algebraic Riccati Equations are analyzed. We derive a new parametrization of the set of solutions, which may be viewed as alternative to the classical one based on Lagrangian subspaces of a “pseudo-Hamiltonian” matrix. Generalizing the symmetric case, the proposed parametrization is given in terms of pairs of invariant subspaces of two related “feedback” matrices. Exte...
متن کاملInvariant neutral subspaces for Hamiltonian matrices
Hamiltonian matrices with respect to a nondegenerate skewsymmetric or skewhermitian indefinite inner product in finite dimensional real, complex, or quaternion vector spaces are studied. Subspaces that are simultaneously invariant for the matrices and neutral in the indefinite inner product are of special interest. The dimension of maximal (by inclusion) such subspaces is identified in terms of...
متن کاملEla Invariant Neutral Subspaces for Hamiltonian Matrices
Hamiltonian matrices with respect to a nondegenerate skewsymmetric or skewhermitian indefinite inner product in finite dimensional real, complex, or quaternion vector spaces are studied. Subspaces that are simultaneously invariant for the matrices and neutral in the indefinite inner product are of special interest. The dimension of maximal (by inclusion) such subspaces is identified in terms of...
متن کاملInvariant Manifolds Associated to Invariant Subspaces without Invariant Complements: a Graph Transform Approach
We use the graph transform method to prove existence of invariant manifolds near fixed points of maps tangent to invariant subspaces of the linearization. In contrast to the best known of such theorems, we do not assume that the corresponding space for the linear map is a spectral subspace. Indeed, we allow that there is no invariant complement (in particular, we do not need that the decomposit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 23 شماره
صفحات -
تاریخ انتشار 2002